自动驾驶汽车为何不需要雷达? 特斯拉首席AI科学家这样解释
有趣的是,当被问及触发器的生成是否可以自动化时,卡帕西回答说:“触发器的自动化是个非常棘手的问题,因为你可以有通用触发器,但它们不能正确地代表错误模式。例如,很难自动生成具有触发进入和退出隧道功能的触发器,这是人类通过直觉获得的能力,目前还不清楚其具体原理。” 分层深度学习体系结构 特斯拉的自动驾驶团队需要高效和精心设计的神经网络,以最大限度地利用他们收集的高质量数据集。该公司创建了一个由不同神经网络组成的分层深度学习体系结构,这些神经网络处理信息,并将其输出给下一组网络。 深度学习模型使用卷积神经网络从安装在汽车周围的8个摄像头的视频中提取特征,并使用变换神经网络将它们融合在一起。然后,它会随着时间的推移融合这些信息,这对于轨迹预测和消除推理不一致等任务来说非常重要。然后,空间和时间特征被输入神经网络的分层结构中,卡帕西将其描述为头部、躯干和神经。他说:“你之所以想要这种分层结构,是因为你对大量的输出感兴趣,但你负担不起每个输出都有对应神经网络的代价。” 分层结构使得可以为不同的任务重用组件,并支持不同推理路径之间的特性共享。网络的模块化体系结构的另一个好处是进行分布式开发的可能性。特斯拉目前聘用了一个庞大的机器学习工程师团队,致力于自动驾驶神经网络的研究。他们每个人都在网络的单个小组件上工作,然后把他们的结果插入到更大的网络中。卡帕西称:“我们有个大约20人的团队,他们在全职训练神经网络。它们都在同一个神经网络上合作。” 垂直整合 在CVPR的演讲中,卡帕西分享了特斯拉用来训练和微调其深度学习模型的超级计算机的更多细节。整个计算集群由80个节点组成,每个节点包含8个英伟达A100图形处理器和80 GB显存,总计5760个GPU和超过450 TB的VRAM。这台超级计算机还拥有10PB的NVME超高速存储和640 Tbps的网络容量来连接所有节点,并允许对神经网络进行高效的分布式训练。 特斯拉还拥有并制造安装在其汽车内的AI芯片。卡帕西表示:“这些芯片是专门为我们希望在完全自动驾驶应用中运行的神经网络设计的。” 特斯拉的最大优势是它的垂直整合能力。该公司拥有整个自动驾驶汽车堆栈,自己生产汽车和自动驾驶功能硬件,同时通过从售出的数百万辆汽车中收集各种各样的遥测和视频数据占据独特的位置。特斯拉还利用其专有数据集创建并训练其神经网络,并通过在其汽车上进行影子测试来验证和微调这些网络。当然,特斯拉拥有杰出的团队,由机器学习工程师、研究人员和硬件设计师组成,他们把所有的东西组装在一起。 卡帕西说:“你可以在所有层面进行协同设计和攻坚,没有第三方在阻碍你。你完全掌控了自己的命运,我认为这是不可思议的。” 这种垂直整合以及创建数据、调整机器学习模型并将其部署到许多汽车上的能力,使特斯拉在实现仅基于视觉的自动驾驶汽车能力方面获得了优势。在他的演讲中,卡帕西展示了几个例子,显示新的神经网络胜过了与雷达信息结合工作的传统ML模型。卡帕西说,如果该系统继续改进,特斯拉可能会淘汰激光雷达,并认为没有其他公司能够复制特斯拉的方法。 未解决问题 但问题仍然存在,比如深度学习目前的进步状态是否足以克服自动驾驶面临的所有挑战。当然,目标检测、速度和距离估计在驾驶中起着重要作用。但是人类的视觉还有许多其他复杂的功能,科学家们称之为视觉的“暗物质”。这些都是意识和潜意识分析视觉输入和不同环境导航的重要组成部分。 深度学习模型也很难做出因果推理,当模型面对他们以前没有见过的新情况时,这可能是个巨大的障碍。因此,虽然特斯拉成功地创建了庞大而多样化的数据集,但开放道路上的实际环境却非常复杂,那里随时都可能发生新的、不可预测的事情。 AI社区存在的分歧在于,是否需要明确地将因果关系和推理整合到深度神经网络中,或者是否可以通过“直接拟合”克服因果关系障碍。特斯拉以视觉为基础的自动驾驶团队似乎更喜欢后者,但这项技术显然需要接受时间的考验。(小小) (编辑:武汉站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |